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We consider two-dimensional Coulomb gases (standard or hard-core) with 
activity z, and prove that for any fl > 8~ the two-point external charges correlation 
function exhibits the power-law falloff characteristic of the Kosterlitz-Thouless 
phase at sufficiently low activity. 
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1. I N T R O D U C T I O N  

A two-dimensional  (lattice) Cou lomb  gas is a system of classical particles 
with electric charges _ 1, whose possible positions range over a finite array 
of sites A c Z 2, interacting via a two-body Cou lomb  potential. In the 
s ine-Gordon representation the part i t ion function of the gas is given by 

zA= f ]-] L(,t,(x))du~(~) (1.1) 
x E A  

where d#~ is the Gaussian measure with covariance / 3 ( - 3 )  1, /3 is the 
inverse temperature,  d is the finite-difference Laplacian on Z 2, and 

�9 ~z(q~) - -  ~ )~z(q)e iqo 
qEZ  

where 2z is the "a prior i"  charge weight at particle activity z ~> O. 
In this article we will always require 2z to satisfy: 

(a) 2 z ( q ) = 2 = ( - q ) .  
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(b) I.~z(q)l<~c(z)e -vlql for all q e Z \ { 0 } ,  where 
limz+ o c(z) = O. 

Such 2z will be called standard. The typical examples are: 

The hard-core gas: 

1, q = 0  

Az(q)= z/2, q= -t-1 

0 otherwise 

v > 0  and 

In this case, ,{z(r = 1 + z cos r 

2. The standard gas: 

'2 2z(q) = ~--~ eZ~176176 

In this case, ~z(r = e . . . .  r 
The external charges correlation function is defined by 

G ~ , ~ ( x )  - z:,Ax) 
ZA 

where 

Zr -= f e <{r162 [ I  i z (r  dp~(r 
y E A  

(1.2) 

is the external charges partition function. Here ~ e R. By G~(x) we will 
denote a thermodynamic limit. 

At high temperature, Brydges and Federbush (1) showed that Debye 
screening occurs (see also Yang(2)), i.e., 

G~(x) --+ Cte > 0 as x --+ c~ 

exponentially fast. 
An application of Jensen's inequality in the q-variables shows that(12) 

C/L~ 

where 0 < C~,~ < c~. 
Fr6hlich and Spencer (3) established the existence of a Kosterlitz 

Thouless transition from a high-temperature to a low-temperature phase, 
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characterized by scaling and power falloff of correlations. They proved that 
Debye screening does not occur for fl sufficiently large and 

C 

for fl>b/c17 2, where r/= min(~, (1 - 3 ) )  and 0 < 3 <  1. 
In a recent article in collaboration with Perez, (4) we improved on the 

Fr6hlich-Spencer result by showing the existence of a critical inverse 
temperature fl = fl(2z) < ~ ,  and 0 = 0(2z) > 0, such that for all /3 > fl and 

e R we have 
C 

where t /= dist(~, Z), 0 =  dist(~, Z\{0}) ,  and C =  C(/3, F/)is such that 

sup C(/3, F/)< ~ for any 7 > 0  
y<r/~<l 

In addition, it was shown that for standard 2 z this critical inverse 
temperature f l=f l (z)  is at most 24Tc in the low-activity limit, i.e., 
fl(0) - limz,o fl(z) ~< 24~. This result was improved to fl(0) ~< 

8(1 + ,~/3)~c/(3 - x/3)  ~ 17.2~ by Marchctti. (5) 
A new proof of the Fr6hlich and Spencer results was given recently by 

Braga. (6) 
Renormalization group analysis and energy-entropy arguments suggest 

that f l (0)=8~.  (3'7 9) Recently Dimock and Hurd (1~ proved that the 
eqilibrium measure of a standard Coulomb gas on R 2 is driven, under a 
renormalization group transformation, to a Gaussian measure if/3 > 8~ and 
z is sufficiently small. 

In this article we prove that fl(0)~< 8~. More precisely, we have the 
following result. 

T h e o r e m  1.1. Consider a two-dimensional Coulomb gas with a 
standard "a priori" charge weight. Let /3 > 8g. 

Then there exist z(/3) > 0 and 0 = 0(/3) > 0 such that for 0 < z < z(/3) we 
have 

C 
G~(x) <<. ~ - ~  

for all ~ R ,  where q=d i s t (~ ,Z) ,  F/=dis t (~ ,Z\{0}) ,  and C=C(/3, z,O) 
with 

sup C(/3, z, ~ )<  ov for any 7 > 0  
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To prove the theorem, we modify the procedure used in ref. 4. The 
procedure in ref. 4 used ideas developed for the hierarchical model by 
Marchetti and Perez (8'9) combined with the main ingredients o f  the 
Fr6hlich-Spencer proof. (3) As in ref. 3, expectations in the two-dimensional 
Coulomb gas are written as convex combinations of expectations in diluted 
gases of neutral multipoles of variable sizes by a simple trigonometric 
identity. Falloff is extracted from charged multipoles by an analytic 
continuation argument. The partition function (with or without external 
charges) is initially rewritten as a convex combination of (appropriately 
defined) regular partition functions in a given initial scale. It is then proven 
that regular partition functions at a given scale can be written as convex 
combinations of regular partition functions at the next scale. The scales 
used are of the form L~ + 1 ~ L~, and in ref. 4 it was shown that 

fi(O) ~< 8g (1.3) 

But the analytic continuation argument (Lemma 3.3 in ref. 4) required 
c~ > 3/2. Hence fl(0)~< 24~. The c~ > 3/2 came from taking into account the 
background of neutral multipoles in the analytic continuation argument. By 
looking more closely at this background, Marchetti (5) showed that one 
needed only c~ > (1 + x/~)/2 and hence fl(0)~< 8(1 + xf3) re/(3 - x/3) - 17.2~. 

It follows from (1.3) that to prove fl(0)<~ 8~, we need to let c~J, 1. But 
we must pay a price for this. The proof of Lemma 3.3 in ref. 4 was based 
on an imaginary shift of the integration variable ~b which was required to 
be constant on the support of the neutral multipoles in the background. 
The falloff factor obtained at scale L was of the form Y ~ L  - ~  ~)~/~4~+c) 

for some constant C - - - C ( L , c ~ ) , ~ L  3-2~. To make Y ~ 0  as L-~oo ,  we 
needed c~ > 3/2. It turns out that the inverse temperature fl above which the 
proof in ref. 4 gives power-law falloff is 

/~ = (sr~ + 2 c )  - -  
2--o~ 

By taking the initial scale to infinity we get (1.3). 
In this paper we improve the energy estimate to obtain 

C = C(L,  ct) ~ (log L)  p L (1 - 2 )  

where 2 < p < oo is fixed. We can thus pick any e > 1. To do so we cannot 
make the imaginary shift constant on the neutral charges background, so 
we must consider a more general form of a regular partition function. This 
has been advocated by Spencer ~ (some preliminary calculations were 
done by Braga). 
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This paper is organized as follows. In Section 2 the partition function 
(1.2) with standard "a priori" charge weight is rewritten as a convex 
combination of k-regular partition functions for any scale k (Theorem 2.1 ). 
In Section 3 we prove the analogous result for the external charges 
partition function (Theorem 3.1) and then prove power decay for the 
external charges correlation function (Theorem 1.1). In Section 4 we prove 
Lemma 2.3, which gives the energy estimate that allows us to extract 
power-law falloff for any scale parameter ~ > 1. We consider this improve- 
ment in the energy estimate the most important result in this work. 

2. T H E  P A R T I T I O N  F U N C T I O N  

We will follow the notation used in ref. 4, except that we will use two 
norms in Z2:[xl2 and IX[oo. By B(x, L) we will denote the square in Z 2 
centered at x with side L, i.e., 

B ( x , L ) = { y e Z 2 ! l y - x [ o ~ <  L} 

We will also use B(x, L)= B(x, %). 
We will fix/~ > 8~, and pick e > 1 and an initial scale L 1 = 3 n~, where 

n l e N .  The successive scales are then given by L~+~=3  nk+l, where 
ng+~ = [c~nk] (here [ t ]  =largest integer ~<t). We set L0-- 1. 

We will always take A to be a square centered at 0, say A = B(0, R), 
and we pick N such that LN_~<R<~L N. We set A(k~=Ac~LkZ 2, 
Bk(y ) = B(y, Lk) for y e A (k~, B(kk')(y) = Bk(y ) c~ Lk,Z 2 for k' ~< k. Notice 
A(~ A ( N ) =  {0}.  

Let us fix a standard charge weight 2z(q); we set ((q)=c~e (v/Z)lq[, 
where Cl is a constant chosen so Zq~ z [(q) = 1. As in ref. 4, Section 2, we 
start by rewriting ZA given by (1.1) as a convex combination of expressions 
of the form 

f [I (1 +ZyCOSq~(py))d~tB(~) (2.1) 
yeA (1) 

where py: Z 2 ~ Z with supp py ~ Bl (y  ), py ~ 0, and 

[ L~_ 22(py(u))7~czL~c(z)e_(V/2)lOy I (2.2) 
0<zy~< 1-[ [_lo82 ~ j  

u ~: BI(y) 
p),(u ) r 0 

where fpyr - [Pyla = ~2u~z2 ]py(U)], c2 = 2/@1 log 2) < oo, in case czL21c(z) 
< 1, which is always true fo'r z sufficiently small. 
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We will need to perform imaginary shifts in ~b in expressions like (2.1). 
This will change the form of the integrand in (2.1). 

So given k, let e(k) be the real-valued function on Z 2 given by 

e(~(x) = 

' 1 Lk+l if [Xl2~<~L k 
log 15 Lk 

61xl2 

1 
0 if [X[2~>~Lk+ 1 

(2.3) 

For y e Z 2, e(yk)(x)= e(k)(x- y). We also define 

= c ( l ) .  ~ey , l>k ,  y e A  (t)} 

Because the form of integrand in (2.1) will change, we need to 
generalize the notion of a weighed charge density (p, z) used in ref. 4. 

Definition. Let k e N ,  y ~ A  (k), t > 0 .  A (k, y, t)-admissible charge 
density p consists of: 

(i) A charge density p localized on Bk(y), i.e., p: Z 2 ~ R  with 
s u p p p c B k ( y )  and total charge Q ( P ) = ~ u P ( u ) ~ Z ,  with IP[= 
Z , ~ z  2 [p(u)] >~ 1 unless p - 0 .  

(ii) A complex-valued activity functional z(p,(J)=e ~(p'~, where 
y(p, ~b) is a complex-valued real-analytic function of the real variables 
{~b(u), u~Bk(y ) )  such that (a) co(p,~b)=9tT(p,~b) is even in ~b, i.e., 
co(p,-~b)=co(p, ~b), and 3(p, q~)= ~7(P, q~)is odd in ~b, i.e., 8(p , -q~)= 
-O(p, ~b); (b) the following holds: 

Iz(p, O)t = e ~~ ~ L~'e-Ipl/log Lk 

and (c) for n = 1, 2 ..... let 6;-~xj- o(tj) ~ 4 ,  J =  1, 2,..., n; then 

j = l  

where 

(2.4) 

(2.5) 

a~(u) 
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and { {15 , } 
d(p, _(t) u[2 ~ 1 ~ . ) =  l y -  

0 otherwise 
(2.6) 

Remark. If 6 e 4 ,  and p is (k, y, t)-admissible, then for any value of 
~b we have 7(P, ~b + (6) defined and analytic in ( for 1(I < d(p, 6) -1 

Def in i t i on .  By an admissible charge density we will mean a 
(k, y, t)-admissible charge density for some k, y, t. 

De f in i t i on .  Let p > 2  be fixed, k e N ,  y e A  (k) , r > 0 .  A collection 
~k,y.r) of neutral [i.e., Q(p)= 0] admissible charge densities will be called 
a (k, y, r)-sparse neutral ensemble if: 

(i) For k = 1, Jff(1.y,r) = ~ .  

(ii) F o r k = 2 , 3  ..... we have 

y,  ~B(k k i)(y) 

where JV(<k--l.y'.r) is a ( k - 1 ,  y', r)-sparse neutral ensemble and p is a 
( k - l ,  y",r)-admissible neutral charge density for some y"eB~k-ll(y) 
with (2.4) replaced by 

and 

8 
Iz(p, ~)1 ~ ~  LL-' ,e -~'~/~~ ~ - '  (2.7) 

Uog z )  

1 ~ Ipl ~ (tog L k 1) p (2.8) 

We let 

F(~,, ,y,r~; '~)= 1-I { l + e ~ ' ~ 1 7 6  
p ~ JV'(k, y,r )  

D e f i n i t i o n .  Given k e N and r > O, a (k, r)-regular charge assignment 
is a collection {~k,y,r), Py}yeA (k), where JC(~k.y,r)is a (k, y, r)-sparse neutral 
ensemble and py is a [k, y, t + 2 ( ~ -  1)I-admissible charge density, the py'S 
having disjoint supports. 

De f in i t i on .  A (k, r)-regular partition function is a partition function 
of the form 

Z(k,r)= f ]-[ K(k,y,r)(qh) dl-ze(qb ) (2.9) 
y ~ A (k) 
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where 
K(k. y,r)(~b) = F(.A~k, y,r~; ~b){ 1 + e ~162 cos [~b(py) + 3(py, ~b)] } 

with { A/~k, y,r), Py }y ~ A~k~ being a (k, r)-regular charge assignment. 
We have the following result. 

T h e o r e m  2.1. Let l < e < 2 a n d s u p p o s e r > 0 i s s u c h t h a t  

~ -  1 ~ 8 _ 2  ~ 2~-~--~_ < r <  (2.10) 

Then, if the initial scale L1 is sufficiently large, there exists 0 < 2 =  
2(~,r, fl, p, L1) such that if the activity z is such that 0 < z < 5 ,  the 
Coulomb gas partition function ZA can always be written as a convex 
combination of (k, r)-regular partition functions for any k = 1, 2 ..... N. 

Remark. Notice that (2.10) can be satisfied if and only if 
fl > 8g~/(2 - ~). 

Proof. The proof is by induction. The initial step, k = 1, follows 
immediately from (2.1) and (2.2). 

The proof of the inductive step, as the proof of Theorem 3.1 in ref. 4, 
uses two basic lemmas. The first is just Lemma 2.1 of ref. 4, which was 
already used in the derivation of (2.1) and (2.2). We will now rewrite it in 
the form in which we will use it, for the reader's convenience (we just 
substitute e ~' for zi and ~b i + 0i for ~bi). 

k e m m a  2.2. Let I be an index set with N elements, and let coz, 3~, 
~b~ ~ R be given for each i s / .  Then 

l-I [l+e~"cos(o~i+oi)] = ~, co[l+e~cos(fb~+3~)] 
i~l  a ~ ( l )  

where i f ( I )=  {o-:I ~ {0, 1, - 1  }; a not identically zero}, 

i e l  

aft : 2 aiOi 
i~ l  

c%= ~ la~l(%+logbN) 
iEl  

where bu is a constant depending only on N given by 

N 
bN= (21/N- 1)-1 ~<iog 2 

and 0<e~ ,  ~ , ~ { ~ ) c ~ =  1. 
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Now let k~ {1, 2,..., N - 1 }  and let {.X((k.y.~),py}y~A(~)be a (k,r)-  
regular charge assignment. Let Z(k,~) be given by (2.9). As in ref. 4, 
pp. 147-148, we can use Lemma 2.2 to rewrite Z(k,r) as a convex combination 
of partition functions of the form 

f U K(~+I .... )(~)d##(~) (2.11) 
u E A  (k+l) 

where for each u ~ A  (k+l) 

K(~ +1 . . . .  ) = F( ~7((k +1 .... ); (b ) { 1 + e ~'(p*'r COS [~b(p*) + O(p*, ~ ) ] } 

where 

f ( ( k + l  . . . .  )---- U ~ ( ( k , y ' , r )  (2 .12)  
y' ~: B (k) ~u ~ k+l t 

is a (k+  1, u, r)-sparse neutral ensemble and, for each u e A  (k+l), p* is of 
the form 

p* = ~ aypy (2.13) 
-(k) u 

Y e B k + l (  ) 

for some ~r e ~(B(kk+) l(U)), and 

co(p W,06)= ~ laylco(py, ~b)+c, (2.14) 
y~k(~(~) 

O(p*, r  ~ ayO(pp, d?) (2.15) 
-(k) 

Y e B k + l ( U )  

where cu is constant in (;b, 

7(p *, (~ ) = ~o(p *, (~ ) + io(p *, (J ) 

e~(p~, r <. 8 L _ r e _ l p y l / l o g  f I L ( Lk 1 
y E Bk(~ l(U) 

~y~0 

(2.16) 

(2.17) 

all the p*, u ~ A  (k+l), have disjoint support, and we arranged this so that 
if for some u o e A  (k+ll we have pu*=py for some y~n(k)  l(U0),ok+ then 

Bk+ l(Uo), and moreover, y E (k) 

B(y,  1 gLk+ 1) ~ supp p* = ;~ (2.18) 

for u~A (k+ t ) , u~u  o. 

822/64/1-2-10 
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To propagate  our  bounds on the activities to the next scale, we will 
need, in some cases, to extract a self-energy term as in refs. 3 and 4. This 
will be done by the following lemma, which improves on the energy 
estimates of previous approaches (compare with Lemma 3.3 in ref. 4; the 
crucial difference is that  now we only require c~ > 1 instead of e > 3/2). 

I _emma 2.3.  Let 1 < c~ < 2, r satisfying (2.10), and let 
{S((k§ . . . .  ), pu*}.eA(k+l)be given by (2.12)-(2.17). Suppose that for some 
tto~A (k+l) we have �9 _ =n(k) P.o-Py for some y~k+l (uo )  and (2.18) holds. Then, 
we have, for any ~c > 0, 

f {exp[Y(P*0, ~b) + i r  } F(Y((k + L,0, r); ~) 

X 0 K( k + l  .... )(~))dlAfl(O) 
u ~ u o  

= Y('~) f {exp[y(,g.o, ~b) + ir } F('AT(k + ,),-o, ~); ~b) 

x [] K~+l, .o , r)(r162 (2.19a) 
u~-uo 

where Y(~) is a constant  satisfying 

L , + , ' ]  •[q[ y ( k ) ( L k + , ~  "('q'-~('/~)('+")) 
1--~/  ~ ~ \ 15L~; (2.19b) 

where q = Q(P,o), P,o is a charge density with support  on B(y, �89 1) such 
that Q(Pu0) = q, 

Is h2 
c" ~ log Lk <<. [P.ol - IP*o[ ~< c' ~ log Lk 

with 0 < c" ~< c' < 0% a = a(c4 L1) > 0 with limL~ ~ ~ a = 0, and 7(f,o, r is a 
complex-valued real-analytic function of the real variables { r  
Bk+l(Uo)}, with !RT(~u o, r even in ~b, ~7(t5,o, r odd in r and 

19t(Y(fiuo ' q~) - -  Y(P*o'  q~))[ ~ lcZbrc log Lk+l  (2.20) 
15Lk 

for some b=b(a, r, L~) with limLl_~ ~ b = 0 .  Moreover ,  for all n =  1, 2,..., 
f i e f + l ,  j = l  ..... n, 

\LLk + l J  j 

where C = C(L 1, ~, r, p)  with limE1 ~ ~ C = 0. 
Lemma 2.3 will be proven in Section 4. 
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Remark. Lemma 2.3 is true also if we take the complex conjugation 
of both sides in (2.19a). We could thus replace e~+~O+e ~ ~ by 
2e ~7 cos(~b + ~7). We have stated Lemma 2.3 in this form for convenience 
in further applications. 

We can now finish the proof of Theorem 2.1. Let us fix u ~ A (~+ 1), and 
let ay~ ~ # ( / ~  l(u)) be he one in (2.13). We consider several cases: 

(i) Ze ]ayl >>-2. 

In this case we define ~((k+l .... )=~((k+l .... ) and p , = p * .  We must 
prove p,  is [k + 1, u, r + 2 ( ~ -  1)]-admissible. 

From (2.17) we have 

1 
[z(p~, q~)l ~ e Ip,I/log Lk+, Lr+2(~- 1) k+l 

if r > 2 ~ ( a -  1 ) / (2-  cr and L 1 is sufficiently large, since the {py}y~AIkl have 
disjoint supports so 

Ip.[-- ~ [pyl (2.22) 
y:CTyr 

It remains to prove (2.5). Since each ~o(p, ~b) is even in ~b and each 
3(p, ~b) is odd, we have from (2.14) and (2.15) that 

~ ( p . , ~ ) =  ~ I%17 Py, q~ +c .  (2.23) 

Now let 61 ..... 6 n c ~ + i .  It follows from (2.23), (2.5), and (2.22) that 

j y:O-y~-O j =  1 j =  1 

(ii) Zy layl = 1. 

Here we must consider three subcases: 

(iia) [p*[ ~>(log Lk) p 

We let ~((k+l . . . .  ) = X ( k + l  . . . .  ) and p , = p * .  
Then (2.4) follows for p, [in the (k+  1)th scale] from (2.17), since if 

LI is sufficiently large, we have 

(log L1) p-2 > c~(r+ 2e) 

Thus, p,  is [ k +  1, u, r +2(c~- 1)l-admissible. 

(iib) IP*[ < (log Lk) p and Q(p*) = O. 
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Then ~/ig +1 . . . .  ) = f { k  + 1  . . . .  ) W {p* } is a 
ensemble. We take p.-= O. 

(iic) Ip~*l < (log Lk) p and Q(p*) #0. 
(2.11) can be rewritten as 

(k + 1, u, r)-sparse neutral 

f (1 + �89 {exp[7(p*, ~b) + i~b(p*)] + exp[37(p*, ~b) - i~b(p*)] }) 

X F(J~((k+ 1 . . . .  ), ~b) I~ K(k+ ,,=,,)(~b) d/z/~(~b) (2.24) 
u' GA(k+l) 

U '~U 

We apply Lemma 2.3 to (2.24), replacing p* by/~u. We take Pu = r 
7(P,, ~b)= 7(r ~b)+ log y(k). Using (2.17), (2.19b), and (2.20), we get 

8 r --~c(1 tc(r~/ f l ) ( l+a+bfl ) )  
( e x p -  [p*] ~(Lk+t )  Iz(P,, (9)l <~ (lo~-ja L~ 1YgEk/\ lSL, I \ 

We choose 

/ r  

1 

and recall 0 ~< I ~ l  - IpWI ~ c'(~c/~) log Lk. 
Thus, if 

r <  --2~ 
4re(1 + a + bfl) 

we have 

I ( r + 2 ( ~  1 ) ) e - - l p u l / l o g L k + l  

if L1 is sufficiently large. 
In view of (2.21), we can conclude that p,  is I-k+ 1, u, r + 2 ( ~ - 1 ) I -  

admissible if L, is sufficiently large. We take Y((k+l .... )=  X(k+l .... /" 
This concludes the proof of Theorem 2.1. 

3. P O W E R - L A W  FALLOFF 

We start by studying the external charges partition function Zr 
given by (1.2). We want to prove the analogue of Theorem 2.1 for it. The 
extension of the treatment given to the partition function ZA in Section 2 
to Zr is similar to the extension in ref. 4. We shall skip details when 
they are essentially done in ref. 4. 
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Given ~eR,  we let t /=dis t (~ ,Z)  and 0=dis t (~ ,Z \{0}) .  We fix 
1 1 Without loss of x e Z  2, and choose No such that 5LNo<lxt~<SLNo+~. 

generality we take No > 1. 
As in (2.1), the external charges partition function can be written as a 

convex combination of expansions of the form 

f eir176162 [ I  [-1 + zy cos q~(py)] d#~(~b) (3.1) 
y ~ A  (1) 

where {(py, zy); y e A  (l)} are the same as in (2.1) and (2.2). This is the 
initial step in the inductive procedure we will now describe. 

We have two distinguished sites, 0 and x. To keep track of these sites, 
we introduce the following notation: given yeA,  we denote by Yk the 
unique point in A ~k~ such that y~Bk(yk). Notice that 0 k = 0  for all k. At 
scale k = 1, 2 ..... No we will have two distinguished sites in A(k): 0 and x~. 
F o r k ~ > N  o + l  we h a v e x k = 0 .  

As in ref. 4, at the squares Bk(0) and Bk(Xk) we will replace the 
previously unique charge density p by two charges densities, p +, p - ,  with 
Q(p +) = Q(p ); terms of the form {1 + e ~O'~) cos[~b(p) + 0(p, ~b)] } are 
replaced by terms of the form 

1 -[- I[eY(P+'O)+i4~(P*) + e 9(p '4)) io(p )] 

where, as before, y(p+, ~b)= co(p +-, O)+iO(p +, (b). Here ~ is the complex 
conjugate of y. 

De f in i t i on .  Le tkeN ,  yeA(k),r>O. Apair(p+,p ) i sa (k ,y , s ) -  
admissible pair of charge densities if: 

(i) p+ =p+_a, where p and o- are charge densities with support in 
Bk(y)=B(y,(IO/3)Lk), Q(p+)=Q(p- )eZ  [-so Q ( a ) = 0 ] ,  Ipr>~l unless 
p - 0, and 

c' ~ k  1 
pa]418~ ~-1  l ogL  k 

with 0 < c' < oo given by (4.23). 

(ii) p-+ have activity functionals z(p+,~b)=e ~(p§162 with 7(p+,~b) 
being a complex-valued real-analytic function of {~b(u); U~;~k(y)} such 
that (a) co(p -+, ~b)= ~Ry(p -+, ~b) is even in ~b and ~9(p +, ~b) = ~7(p -+, ~b) is odd 
in ~b; (b) 

[z(p +, ~b)[ ~< L~Se <p+ >/,og Lk (3.2) 
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where ( p •  = IPI 4- Io-I (notice we allow supp p ~ supp ~ # ~ ) ;  and (c) 

j_--~l ( ~ )  fi c~j. 7(p -+, r <~n! ( p •  d(p +, fij) 
j=l 

with 61 ..... ,5 ~ e o%. 

D e f i n i t i o n .  Let k = 1, 2,..., N, Yk = 0 or xk, r > s > 0. A collection 
g(k, yk,,,*) of neutral  weighed charge densities will be called a (k, Yk, r, s)- 
sparse modified neutral  ensemble if: 

(i) F o r k = l , # u ,  yl .... )=~5.  

(ii) For  k = 2,..., No, 

• ( k ,  y k , r , s )  ~ U 
u ~ B (k - 1)(yk) 

U ~ Y k - I  

(iii) F o r k = N o + l  

~ ( k - 1  .... )U ~(k-- l, yk 1 . . . .  )U {(P+'P--)} 

<No+,,o,r,,,= U < n o ,  .... U {A~o) = O, XNo u e BNo + 1(0) Y' 
u =/- O, XNo 

4No,,,,r,,) U {(p +, p- )} 

(iv) For  k > N o +  1, we have as in (ii), where J/ik i .... ) is a 
( k -  1, u, r)-sparse neutral  ensemble, g(k l,y,r,,) is a ( k -  l, y, r, s)-sparse 
modified neutral  ensemble, and (p +, p -  ) is a (k - 1, y', s)-admissible pair 
of neutral  charge densities for some y ' e  B(k k-  1)(yk) with (3.2) replaced by 

2 3 .3 --s 
le7~162 ~ (log 2) 4 L k -  1 

and p•  = p + ~r with p satisfying (2.8). 
Notice  that #(k.y,r.,) consists of charge densities p and of pairs of 

charge densities (p +, p -  ). 
We let 

G(g(k,y,r,~); r  1-I {l +e~162176162 
P ~ ~(k, y,r,s) 

x 1-[ S ( (p  +, p ), r 
( p  +, p - ) e d~ y,r,s) 

where 

H((p +, p -  ), r = 1 + �89 7(p+'o)+~(p*) + e ~(p ,~)-i~(p )) 
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Def in i t ion .  Let k =  1,..., N, r > s > 0. A (k, r, s)-modified charge 
assignment is a collection 

{ ~((k,y,r), Py}yeA(k)\{O, xk} t...J { ~(k v rs), ( P ; ,  P y  ) }y:O,x  k 

where, for each y e A(k)\{0, xk}, ~/((k,p, rl is a (k, y, r)-sparse neutral ensemble 
and py is a I-k, y, r + 2(c~ - 1 )]-admissible charge density, and for y = 0, xk, 
g(k,y,r.,) is a (k, y, r, s)-sparse modified neutral ensemble and (p+, p ) is 
a (k, y, s)-admissible pair of charge densities. In addition, the pz's and 
(p~, py  ) have disjoint support, where the support of (p +, p - )  is the union 
of the supports of p + and p . 

Def in i t ion .  A (k, r, s)-regular external charges partition function is 
an expression of the form 

Z~k'A r's)(X) ~- f eir [I K(k, y,r)(~)) 
y ~ A(kl\{O, xk} 

• ~ W;k)(~)) R(k,y,r,s)(r d]JB(r (3.3a) 
y = O, Xk 

where K(k,y,r)(r is as in (2.9) and 

with 

R(k, y,,,,)(r G(oZ(< v,r,~); r  +, P~), r 

being a (k, r, s) modified charge assignment; wk is the modified external 
charge density; for k = 1, 2 ..... No, wk = w~ ~ + w~ x), where w~ ~ w~ x) are 
external charge densities with disjoint supports contained in Bk(0), B~(xk), 
respectively, and Q(w~~ 1; for k>~No+ 1, wk is a neutral 
charge density localized in B~(0). In addition, W~k)(~b)=exp[7(~w2 y), r 
where 7(~w(kY); r is a complex-valued real analytic function of {r 
u ~/~k(Y) } with even real part and odd imaginary part, satisfying (2.5), and 
such that: 

(i) w())(r  1. 
(ii) We have 

l@k k 1)--B6e2/8~ [ m  ( k - l ) ( ~ ) l  

(3.3b) 

for k =  1 ..... N 0, where 6 = 1/(1 +a+flb) with a, b given in Lemma 2.3. 

(iii) W(ok)(r = w(N~162 W (N~162 for k ~> N O + 1. 0 x ~WY 
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The extension of Theorem 2.1 is as follows. 

T h e o r e m  3.1. Let 1 < ~ < 2  and r satisfying (2.10). There exists 
6 =6(a,  r, fl, L1) with l imL~ oo 5 =  1, such that, if 

O<s<min{!(  r-fl(~-l)Stl~ ) 8 ~  , fir(g/2- q 2 / 2 ) ~  J (3.4) 

and the initial scale L 1 is sufficiently large, there exists 0 < z(~, r, fi, p, L1) 
such that if the activity z is such that 0 < z < z(a, r, fl, p, L1), the Coulomb- 
gas external-charges partition function Zr can always be written as a 
convex combination of ( k, r, s )-regular partition functions for any 
k = l , 2  ..... N. 

ProoL Theorem 3.1 is proven by induction. The initial step, k =  1, 
follows from (3.1). The inductive step proceeds as in the proof of Theorem 4.3 
in ref. 4, using Lemma 2.3 instead of Lemma 3.3 in ref. 4. We present here 
the induction for k = 1, 2 ..... N o - 1, the modifications for k ~> No being just 
as in ref. 4. 

So, let k~ {1 ..... N o - 1 } ,  and let Z~k'Ar")(X) be given by (3.3a) with 
r > s > 0 satisfying (2.10) and (3.4). Proceeding as in the proof of Theorem 4.3 
in ref. 4, one can write this as a convex combination of expressions of the 
form 

vr (r162 d~( r  f e'r H x(,+i .... )(r H (~) * 
uEA(k+l)\{O, xk+l} y=O, Xk+l 

(3.5) 

where K(k+x .... )(~b), ueA(k+l)\{0,  Xk+l} is as in (2.9) (at scale k +  1; here 
we used the proof of Theorem 2.1), 

e~k+l,y,r,s  ) = G(~{k+l,y,r,s); ~)) g ( ( D ~  +, py* ), ~)  

with 

~k+l,, ,r , ,)= U ~ k  .... ) U e(~,,k .... ) 
ulk} 

u E ~ k  + I (Y)  
UP Yk 

being a (k + 1, y, r, s)-sparse modified neutral ensemble, and (py* +, p* - ) 
is a pair of charges with support in /lk+l(Yk+l) of the form 
p* + , + = Py + %P7,, with complex-valued activities functionals z(p *+-, O)= 
exp[7(p *-+, ~b)], 7(p *+, ~b) being a complex-valued real-analytic function 
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of the variables {~b(u), u e/}k + ~(Yk + t ) } such that its real part co(p* • ~) is 
even in ~b and its imaginary part O(p*-+, ~b) is odd in ~b, 

Iz(p *+-, ~b)l ~< L-~J Iz(p~, r e <py'~• (3.6) 

for some zl, '[2 = 0 or 1 with Zl + r2 r 0 (notice that  we actually have "c 2 = 0 
or 1 in Lemma 4.1 of ref. 4). 

Remark. Lemma 2.1 was stated in the form in which it was used in 
Section 2. In this section we will use it in (3.5) with Pu* replaced by either 
~w(k y) or ~w(kY) +_ * + py~-; the proof is still valid with the same conclusions. 
Notice that  it follows from (2.3) that the imaginary shift in the proof of 
Lemma 2.3 is constant  on the support of p + ,  so their presence does not  
affect Lemma 2.3. 

We consider several cases: 

(i) r r  We define #(k+l,y,r,s)=~k+l.y,r.,),  and look separately at 
each factor of 

{exp [i~b(w(y))] } (k) 1 , W~ (1 + 5 {exp[7(Py +, f~) + iqJ(p)* + )] 

+ exp[~(p* , ~b) -- iO(p*- )] }) (3.7) 

We use Lemma 2.3 for the first factor to replace w(k y) by 

w ( , )  = k + l  

and W / )  by W (k+ 1); we choose ~c = t12f16/97z~. It follows from (2.19b) and 
(2.20) that  (3.3b) is satisfied; (2.5) follows from (2.21). We then see that 
(3.7) can be replaced by 

{exp[i~b(w(~ 1)] } w~(k+l)(l+ �89 {exp[7(f i ;  , ~b) + i~b(fi+)] 

+ exp [~7(fi.;-, ~b) - i~b(r ~- )] }) (3.8) 

where 

SO 

. _ - -  " k + l  

, + I w / )  . . . .  (y) (Py -}~><fi~}--~ 11 . ' ~ k +  

C' S q  2 

c'5 1 > -  og5, 
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by Lemma 2.3, and 
w(k) 

7(r q~) = y(p* -+, ~b) + log Y-- (k+ 1) Wy 

It follows that 

~+ ( L  k + 1) r162 2 4 1 - . 
r eC'O/18"e (P7)/log Lk 

le ~%7 ~)1 ~< \ 15Lk] (log 2) s L k 

- -  e -<f f  >/l~ (3.9)  
~< Lk+l 

if s <  (1/e)[r--fl6(~-- 1)r/2/8~] and Ll sufficiently large. So (/5 +, ~5~) is a 
(k + 1, Yk+ 1, s)-admissible pair of charge densities. 

(ii) v 1 = 0, so p* -+ = p+ = Pyk-t- aye. We consider three subcases: 

(iia) IPykl ~>(logLk) p. We set g(k+l,y,r,s)=~(k+l,~,r,s), and as before 
apply Lemma 2.3 to the first factor in (3.7), obtaining (3.8). The only 
difference is that we do not have (3.9), but it follows from (3.6) and (3.3b) 
that 

(Lk+l~2/s~ 2 4 
I e~(~+ ~)' "< \ 1-5F~k j ( ~ )  

(Lk+__._~l)-(1/a)(l~ f )/log Lk 
X L k ~ \  Lk / 

--s e (~f )/logLk+i <<.Lk+l 

if L1 is sufficiently large, so 

(log L1)P- 2> ~ (x- t -~2g)  >~c~ ( s  + ' ~  rl2) 

for all t/since t/2~< 1/4. 

(iib) IPykl < (IogLk) p and Q(pyk)=0. We apply Lemma 2.3 to all 
factors in (3.7), choosing ~c=q2flS/9rc~, and we notice that (3.7) can be 
written as [see (4.22) for a similar argument] 

{exp[i~b(w(k~ 1)] } m(y k + 1)( 1 -~ �89 {exp[7(p* +, ~b) + i(o(p* + )] 

+ exp [~(r - ,  ~b) - iO(p* - )] }) 

It follows from (3.6) that 

O~(k + 1, y,r,s) = ~(k § 1, y,r,s) U {(PY~ -t- f)y* )} 

is a (k + 1, y, r, s)-sparse modified neutral ensemble. 
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(iic) I Py~l < (log Lk) p and Q(Pyk) r O. We take g(~ + 1, s.r,~.) = 
~r and apply  L e m m a  2.3 to each term in (3.7), replacing it by 
(3.8), where ,~,~Y) (k+1) ,~k+ 1, W~ are as above and 

~+ 
p ?  = p*  +- + ~w(~ ~) -T- ;~.,(~) 

- -  ~ ' ~ k + l  

7(/5 +,  ~b) = 7(P* -+, ~b) + log W(y k + 1)(~) ~- log Y(~) 

SO 

[Not ice  that  we chose ~c in L e m m a  2.3, for the second and third terms in 
(3.7), to be ~c= flc50/27c ] 

Now,  by L e m m a  2.3, 

c' cSO, 

c' c5~I 2 c ' cSO 
~< <p*-+ > + ~ log c~ + ~ log L~ 

5c'6 
~< (p*+ > + ~ l o g  L~ 

Thus  

I e~(~+ ~)1 ~< L~ + i e <P~ >/log Lk+~ 

if S <  ( /36/47@02- ' /2/2)  and L1 sufficiently large. 
This completes  the p roof  of  Theorem 3.1 for k ~< No - 1. 
We can now prove  Theo rem 1.1. We follow the p roof  of Theorems  1.1 

and 1.2 in ref. 4. Let x e Z  z with L u o < 2 l X l o o < L x o + l ,  N o ) l ,  and let 
A = B ( O , R )  with LN_I<R<<,LN,  N > N o .  For  any /3>8~,  we pick 
1 < ~ < 2, L1 sufficiently large, and r > 0 such that  

2 ~ ( e ) l -  < r < BcS,___ _ 2~ (3.10) 
2 - e 4z 

Not ice  that  (3.10) requires 

87~ 0~ 
f l > _ _ m  6 2 - - ~  
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which can always be satisfied for fl > 8re by picking ~ sufficiently close to 
one and L~ sufficiently large, since limL~ ~ o~ 6 = 1. We take L~ large enough 
so that  Theorem 3.1 holds. Then we have, for any 0 < z < z(L~, c~), that the 
external charges correlat ion function Gr ) c a n  be written as 

G~'A(X)-- ~" e Z (u,r,s) = 2 d~ 7(U,r,s) (3.11) 

where c,,  d~>0,  ~2,~g c ~ = Z ~  d~= 1, where for each 7 6 f f ,  z~N3~'])(X) 
is an (N, r, s)-regular external charges part i t ion function and 7(N'r's~ is the ~O,A,y 
same expression with ~ = 0. Here r, s are chosen satisfying (2.10) and (3.4), 
which can be done because of (3.10). 

We must  first show that (3.11) is well defined. Notice that 4 - , 0  
implies t/--* 0 and 0 ~ 1. Thus, if s satisfies (3.4) for any ~, it also satisfies 
(3.4) for ~ = 0, and Theorem 3.1 also applies to ~ = 0. Moreover ,  for any 

~ ~ the part i t ion function 7(U'r's) has the following properties: ~O,A,7 

(i) W(oU)(~b) = 1. 

satisfy (ii) For  all k = l , . . . , N  and y = 0 ,  x, (pJ ,pyk )~8(~ ,y~  .... 
p+ = p~  = py~ and 7(py+, O) = 7(Pyk, ~), so 

1 + �89 {exp[y(p +, ~b)+ i(~(p + )] + exp [~(p~,  ~b)- iO(Pyk )] } 

= 1 + e ~(pyk'~) cos [~b(py k) + O(py k, ~b)] (3.12) 

where Pyk is a (k, Yk, s)-admissible charge density. 
Thus we have 

r 
1 + e ~~176 cos [~b(py k) + O(py~, ~b)] ~> 1 - - -  (3.13) c; 

where c is a fixed constant.  It follows that 7(N'r's) is the integral of a strictly ~O,A,y 
positive function and hence > 0. 

Thus (3.11) is well defined. 
For  ~ # 0, we have 

1 iO(pX) ] }  c 1 +~ {exp[7(pf, ~b)+ i~b(p+)] + exp[~(pf, ~b)- ~ 1 + -  
L; 

(3.14) 

F rom  (3.11), (3.13), (3.14), and (3.3b) we get (see ref. 4, p. 161 for 
details) 
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(N,r.s) 
IGe, A(X)I <~ ~ d~ rZr (x)l 

7(N,r,s)  y ~  ~0, A,7 

<~ - -  e L [ ' ]  [ 1 k=l 

~[k--~I1 (+LCLkSX]2~l ( l s L : c L k S / ]  J = 1)fl6rl2/5g 

15 N~ 1LlJ 

C Ixl L0.  

for some 0 = 0(c~, L1, fl) > 0. 
This completes the proof of Theorem 1.1. 

4. THE PROOF OF L E M M A  2.3 

Let us fix k e { 1 , 2  ..... N - I } ,  u e A  (k+l), and recall ~ k + l  .... )given 
by (2.12). 

For p E JV~(k + 1,,,r), let 

F(p, r = log{ 1 + e ~(p'r cos[r + 0(p, r } (4.1) 

Using the Taylor series for log( l + x) at x > O, plus cos O 1, io - =gte  +e-i~ 
we can write 

r (p ,  r  ~ 2 a,m e'z'm(p'r 
m=l neJ  m 

where Jm = { --m, --m + 2, --m + 4  ..... m --2, m}, 

(--1) m+l m! 
anm -- m . 2  m [ (m-n )~2] !  [ (m+n) /2] !  

7 nm(P, r = moo(p, r + in( r ) + O(p, r 

(4.2) 

and notice that 

and 

1 
Z laoml < -  

helm m 

[eT~m(P,r = em~J(P,r 
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It thus follows from (2.7) that (4.2) is absolutely convergent if L 1 was 
sufficiently large. 

i . e m m a  4.1.  Let p be an (l, y, r)-admissible neutral charge density. 
Then F(p, O) is a real-valued real-analytic function of the real variables 
{~b(y'); y ' e /7+(y)} ,  such that  for all N =  1, 2 .... and (~1, '",  (~NE~// we have 

U ~)J" I'(p, ~ C1CNN! IPl N H d(p, 6j) (4.3) 
j = 1  j = l  

for some fixed constants C <  oo and C I = C , ( L 1 ,  ~, r ) <  ~ such that  
limLl ~ ~ C1 = 0. 

ProoL Let ~N be the collection of partit ions P = ( P ~  ..... Ps) of 
{1,..., N};  given a function f and derivations D, ..... DN, we have 

D{1,...,N}eZ= ~ (Dp~f) e f (4.4) 
Pe~N 

where Do_ = l~j~o_ Dj. 
Now let constants C, C, ,..., CN be given, and suppose for Q c { 1, 2,..., N} 

that  we have 
]D o f t  <<. CCQr! (4.5) 

where r = I QI and Co- = l-[j~ o_ Cj. 
Then, if given P = (P~,..., P , )  we let ri = ]Pi], it follows from (4.4) and 

(4.5) that 

ID{1,...,u}efl<~( ~, C*rl[...r,!)lef[C{l,...,u} (4.6) 
Pe~N 

Let TN = Ze~,eN C~r* [ "'" r, !. If nj = # {Pi: r, = j ,  i = 1,..., s}, we have 

C n l  + . . .  + n N 

TN=N! 2 rtl!...nN! 
n l , . . . , n N  

where the summat ion is over all nonnegative integers nl ..... nN, which 
are solutions of the equat ion n 1 + 2 n 2 +  . . .  +NnN=N. By using this 
constraint,  TN can be rewritten as 

_ _  1 / C \  ~' 1 ( C'] ~2 1 ( C'~ ~N 
TN= 2NN! =,L,,<~7,'. ('2 n2---[ t,~) "'' ~7!N" \ ~ )  

( " )  <~ 2NN! exp C j~  2 - j  

<~ 2NN! exp C 
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Thus, it follows from (4.6) that  

ID{j, ..N}eUI <~ 2NN! eClef I C { I , . . . , N  } (4.7) 

We now use (4.2) and apply  (4.4)-(4.7) to f = 7 , m ,  Dj=Sj.8/OqS, 
j =  1, 2 ..... N. TO do so, we must  establish (4.5). We have 

jEQ 

where we used [nl ~ m  and (2.5). Here  r =  IQI ,  8r,~ = 1 if r =  1, so Q =  {j~}, 
and zero otherwise. 

If  8 -  - e ~  (~') ~ J~, we use the neutral i ty of p to get 

8(p) = y~ 8(x) p(x) = ~ p(x)[8(x) - 8(v)] 
x ~c 

SO 

18(p)l ~ Jpl 
x ~ supp  p 

for some fixed cons tant  c < oo. 
Thus,  recalling that  I Pl i> 1, 

tS (x ) -8 (v ) l~c lp l  d(p, 8) 

J J~Q 

Thus,  we can use (4.7) to conclude 

~=1 8j" <~N! IplNC N I~ d(P, Sj)le~ m 
j j = l  

where C = 2(1 + c). 
It  now follows f rom (4.2) that  

8j. <<.N! [p iNG N r I  d(p, 8j) -- 
j j = l  m=l m 

which establishes (4.3). 

I . e m m a  4 .2 .  Let p be an (l, y, r)-admissible neutral  charge density, 
8 ~ ,  ~ real. Let IKI C[p[ d(p, 8)<.. 1/2. We have 

[ ~ { F ( p ,  ~ + i t c S ) - F ( p ,  q~)}l <~C21r 8) 2 (4.8) 

with C2 = C2(L1, ~, r) ~ 0 as L1 ~ ~ .  
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Proof. We have 

lgt{F(p,~+i~c6)--F(p,r ~ -~. 6. F(p, 
M = 2  

M even 

~ Cl[~Clp[ d(p, 6)] n 
M = 2  

M even 

~< C2~c21Pl 2 d(p, 3) 2 

provided t~clCIPl d(p, 3) < l/x/2, where C: = 2C1C2, so 
Ca = C~(L1, c~, r) ~ 0 as L1 -* 0. 

L e m m a  4.3, Under the assumptions of Lemmas 4.1 and 4.2, we 
have 

N 

N 
<<'IK[2CI(2c)N+I(N+I) ! IPl u+l  I ]  d(P,~s) d(P,a) (4.9) 

j = l  

Proof. We have 

j~=~ 6j. IF(p, ~ + iK3) - F(p, ~b)] 

<. M=I W f  j=I~I 1 15j" ~5 V ( p ,  

N <~c1cNIpl u[I d(p, aj) L (M+N)[ M! ECIKI IPt d(p, 6)] M (4.10) 
j = l  M = I  

For 0 ~< X < 1/2 we have 

(M+N)!zM=( d'~NzN+I 
M=,.: V., i--7 

(N)[(d)mxu+l"]V(d'~u-m 1 ] 
=m=O ~ JL\dz/ 1 - - z  

=N, L (Nm+l)( Z ~N+l-m 
m=O ",]--2-Z-- Z/ 

Z ~ N + I  - -  1 ]  

I '  ] = N !  1 ~<(N+ 1)' 2N+2 z (4.11) 
(1 -X) N+l 

Using (4.11) in (4.10), we get (4.9). 
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L e m m a  4 .4 .  

~ l ~  Yo) A (l~, 

Suppose ~ is real and such that 

L k  1 
[~1C(log L k_ 1) p 

(15/6)Lk- Lk_l 
Then 

Let yoeA (k), ~=e(k) ~k+l(Yo)=B(yo, �89 +4L~)), YO ~ 

1 
< ~  (4.12) 

P~C~ + l, yo,n 15Lk 

for some b=b(e, L1, r) with l i m c ~ o  b =  0. 

ProoL Let ~A?=~A~(k+l,yr By the definition of sparse neutral 
ensemble we can decompose JV according to the scale of its components, 
i.e., ~A? can be written as the disjoint union 

k 

l = 2  

where 

~A 7(/) = {p(xl); x E ~(t)+ I(Yo) } 

p(l) being an ( l -1 ,  x',r)-admissible neutral charge density for some x 
x' ~Bl I 1)(x), satisfying (2.7)and (2.8). 

In view of (4.12) we can use Lemma 4.2 for each p ~ ~A?, obtaining 

p p ~ A  ?(l) 

Now 
k 

Z [P[Zd(P, fi) 2= Z Z [PtZd(P, fi) 2 
p ~ "  t - - 2  p ~ ( l )  

k )2 
~< 2 2 ( l O g L l  1 ) 2 P (  Z l - I  

1=2 x~akU{lfyO) - \ Ix  -- Yo[2 
Ix -- YO12>~ (15/6)Lk 

k 2 Lk+I/6LI 4(2t + 1) 
~2p LI -  ~ t 2 ~<4 ~ ( logLz_l j  ~1 

l = 2 t = 15Lk/6L I 

<~ C3 l= (logLl-l)2P ~l j l ~  15 Lk 

Lk ] (4.15) 

822/64/1-2-11 
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where C3 is some fixed independent constant and C4=C4(o~,L1)----~0 

a s  Z 1 ---+ oo .  

The result (4.13) now follows from (4.14) and (4.15). 

Lemma 4.5. Let Yo, 3, x, ~?=Jf~(k+~,yo.~ ) be as in Lemma 4.4. Let 
6 j=  e(tj) s ~ for j =  1,..., N, where N e  {1, 2,...}. Then xj 

y~ 6 s. Er(p,(J+iK6)-r(p,  ~ I~ICN! l~ d(yo, k + l ,  by) 
pa.A 2 i = 1  

(4.16) 

where C = C(L1, e, r, p) ~ 0 as L 1 ~ 0% and 

d(yo, k + 1, e] 3) 

~__Lk+l 
=ll0 x-yol2 

otherwise 

(4.17) 

Proof. By Lemma 4.3, the left-hand-side of (4.16) is 

~Itcl2CI(2C) N+ I (N + 1)! 
N 

Ipl u+x ~I d(p, 6j) d(p, 6) (4.18) 
p~,A 7 j = l  

We have 

N k N 

Z [Pl N+I 1-I d(p, 6j) d(p, 6)= Z ~ IPl N+~ 1~ d(p, 6j) d(p, 6) 
p E ,~f" j = l  1=2  p~,A 2"(l) j = l  

Let p EA?(o; we have d(p, @ = 0  unless (4.17) is satisfied. In that 
case, let p be localized in BI l(X'), x'eBll-1)(x), xEB~I)+I(Yo)- We have 
d(p, 6j) = 0 unless Ix - xs]2 >~ (15/6)Lk + 1 -- Lk. Thus 

�89  Yol oo ~ �89 Yol2 ~ [xj-x'12 

If d(p, 6)r  we have �89 ~< Ix ' -Yo]2.  Thus, (4.18) is bounded by 

<~ l~12C1(2C) N + I (N + 1)! 

2 N 2 
X E (IogLt-1)P(N+I)LN+tl  I x - y o I ~  lqs=~ Ixs- Yol2 

Ix YO12 >~ (15/6)Lk 
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N 1 
IKI 2C1(N+ l)[ j_I~ ' -  txj- Y012 

L [4C(logLt  1 ) P L I _ I ]  N+I Lk+F6& 4(2 t+  1) 
• 2 

l = 2 Zl , = 1 5 L k / 6 L l  t 

<~]x, CIC4N' fi "Lk+l [ L [4C(IogL'-')PL'-I]N+'I 
] x~-  --~o ] ( N +  1) f 2-7-7--y~-_ ~ | 

y = ,  2 t = 2  ~ t ~ k + ~  

where C4 is some independent constant. The term in brackets can be bounded 
by some constant C5(L1, ~, r, p), such that C 5 --+ 0 as LI -+ oo. Thus, (4.16) 
follows and the lemma is proved. 

We are now ready to prove Lemma 2.3. Let uoeA (~+I) with P~*=Pyo 
for some yo~ B(k~ l(Uo) and assume (2.18) holds, and let ~c > 0. We obtain 
(2.19a) by performing the imaginary shift r ~ (k) "--+ ~ + ilCgy o , with ~ = (q/[q[ )~, 
and taking (see also the proof of Lemma 3.3 in ref. 4) 

#,o = p,* + ~  A gy o(k) (4.19) 

7(fiuo, r = Y(P*0, r + log I F(S((k + ~o,~); + i~e(k))) ,vo (4.20) 
F(~((k + 1 , y o , r ) ;  ~ )  J 

= ~s (k~ --Ae~ko ~) (4.21) \] 271 exp ,o,  

where q = Q(P*o)- Zy  P*o(Y), ~ k +  ~,yo,~)is defined in Lemma 4.4, and 

F(J~(k + l, yo,r); (9)= H {1 + e~ cos[(~(p) + a(p, ~b)]} 
p ~ ,4 7 

In (4.20) we used the fact that e (~) is constant over Bk(yo) and (2.5) 
YO 

to conclude that 
7(P*0, r + #ce(kh = ,~ n* y0 . . . . .  0, r (4.22) 

Now (2.19b) follows from 

O~<(g(k) _A~(k)~.< Z (k) (k) 2 , ~o, ~ , ~  [~o ( x ) -  ~o (y ) ]  
x ,  y ~  Z 2 

Ix -- Y[2 = 1 

Lk+ t 
< e,~ log ~ + O(L;') 

Lk+ t ~<2~ log ~ (1 + a )  

where a =  a(~, L1) ~ 0  as L 1 ~ ~ .  
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Not ice  also tha t  P*0 and Ae (k) have dis joint  suppor ts ,  and  Y0 

c" log Lk+ 1 ~ IAe(y~0)l ~< c' log L~+ 1 (4.23) 

for some cons tants  0 < c" ~< c' < oo. 
Rela t ion  (2.20) follows from L e m m a  4.4; (2.21) follows from L e m m a  4.5. 

Not ice  that  by (2.5), (4.16), and  (4.20) we have 

6j .  7(flu0, ~<n! [P*0[  d ( p y * , f j ) + t c C  d ( y o ,  k + l , 3 / )  
j = l  j = l  

This comple tes  the p roof  of  L e m m a  2.3. 
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